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Production of laccase and manganese peroxidase
by Fomes sclerodermeus grown on wheat bran
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Abstract The aim of this work was to study the growth
and production of ligninolytic enzymes by Fomes scle-
rodermeus using a natural medium based on wheat bran
as the principal substrate in a solid-state fermentation.
Growth was monitored by measuring the chitin content
in the substrate. The maximum rate of growth was
observed between days 7 and 18. A 38% total dry-weight
loss of the substrate was measured after 28 days of
cultivation. Differential hydrolysis of the substrate
revealed that cellulose was more extensively degraded
than lignin. In the 28-day incubation period, the losses
of cellulose and lignin were 38 and 15%, respectively.
No lignin peroxidase activity was found in any of the
media tested. The maximum manganese-dependent
peroxidase activity recorded was 6.3 U g)1 at 14 days,
while the maximum laccase activity was 270 U g)1 at
28 days post-inoculation. Addition of commonly used
inducers such as copper or manganese did not produce a
further increase in the enzyme activities, nor did addi-
tion of glucose, asparagine, or malt extract.
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Introduction

Important quantities of lignocellulosic materials are
produced annually. These are available for exploitation
as potential sources of food or as substrate for the
production of metabolites by microorganisms. The

organisms able to degrade efficiently the major com-
ponents of wood, cellulose, hemicellulose and lignin,
are white-rot fungi. These fungi possess the hydrolytic
enzymes, cellulases and xylanases, that typically are
induced by their substrates [15]. Lignin is degraded by
a ligninase complex (LC) composed of at least three
enzymes: lignin peroxidase (LiP) [28], manganese-
dependent peroxidase (MnP) [9] and laccase. LiP is a
heme protein with high oxidation potential that oxi-
dizes phenolic and nonphenolic substrates [1,17]. MnP
is considered unable to oxidize non-phenolic substrates,
although it can depolymerize synthetic [29] or natural
[10] lignins in vitro. Laccase belongs to a family of
multicopper oxidases that has a wide range of reducing
substrates like polyphenols and methoxy-substituted
phenols [27]. Appropriate primary substrates like 2,2¢-
azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS)
or 1-hydroxybenzotriazole (1-HBT) can act as cooxi-
dants, extending its range of substrates [2]; natural
cooxidants have also been identified [11]. MnP and
laccase from Rigidoporus lignosus act synergistically in
lignin degradation [7]. Therefore, organisms able to
produce both enzymes are interesting in view of their
potential importance in processes such as bioremedia-
tion, biobleaching of pulp paper, and degradation and
detoxification of recalcitrant substances. The produc-
tion of MnP and laccase by solid-state fermentation in
a low-cost medium instead of the chemically defined
liquid media that are widely used would thus be
advantageous.

Fomes sclerodermeus BAFC 2752 is a white-rot
basidiomycete that was isolated in Tucumán, Argen-
tina. Previously, the production of both laccase and
MnP by this fungus in defined liquid medium was
demonstrated [19]. F. sclerodermeus, besides degrading
lignin in wood [21], was able to grow and detoxify
the fungicide malachite green [20]; therefore, high-
level production of its ligninolytic enzymes in a low-
cost medium would have many biotechnological
applications. The aim of this work was to study the
growth and production of MnP and laccase by the
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white-rot fungus F. sclerodermeus in natural low-cost
medium containing wheat bran as the substrate. The
effect of an additional carbon source, e.g., glucose, as
well as the addition of nutrients such as Mn2+,
Cu2+, and nitrogen was evaluated.

Materials and methods

Organism and culture conditions

Fomes sclerodermeus (Léveillé) Cooke BAFC 2752 (Science Fac-
ulty Collection at Buenos Aires University), was maintained in
malt-extract agar (malt extract 1.2%, glucose 1%, agar 2%,) at
4 �C.

The organism was cultivated in a basal medium containing 4 g
wheat bran and 16 ml distilled water. The effect of additives was
evaluated by replacement of the distilled water with an aqueous
solution of the additive to be tested at the following concentra-
tions: 0.15 mM CuSO4, 1 mM MnSO4, 10 g l)1 glucose, mi-
cronutrients [14] and 4 g l)1 asparagine. The pH of the media was
around 6. The cultures were inoculated aseptically by using three
agar cubes (25 mm2) obtained from the advancing margin of a
colony grown on malt-extract agar.

Weight losses were determined by drying the content of each
flask to constant weight at 80 �C. Dried samples were ground in a
mortar and stored until they were used for chitin, cellulose and
lignin determinations. Crude extract was obtained by adding
100 ml of 50 mM acetate buffer, pH 4.8, to the contents of each
flask, stirring for 20 min, followed by filtration and centrifugation.
The supernatant was stored at )20 �C until needed. For all ex-
periments, measurements were carried out in triplicate parallel
cultures. The values are reported as the mean±S.E.M.

Analysis of proteins, reducing sugars, chitin, cellulose, and lignin

Soluble proteins in the crude extract were determined by the
method of Bradford [4] using BSA as the standard. The chitin
content of dried samples and mycelium from malt-extract liquid
cultures was determined by measuring N-acetylglucosamine
(NAGA) released from chitin after hydrolysis of with 6 N HCl [23].
Reducing sugars in the crude extract were assayed by the method of
Somogyi and Nelson [18] using glucose as the standard. Cellulose
and lignin in the dried samples were determined by the TAPPI
method [25].

Enzyme assays

All enzyme activities were determined spectrophotometrically at
30 �C in a total volume of 1 ml. Laccase activity was determined
at 420 nm (�420=36 mM)1 cm)1) using 5 mM ABTS [2,2¢-azino-
bis (3-ethylbenzthiazoline-6-sulfonic acid] as substrate [3]. Mea-
surements were made in 0.1 M sodium acetate buffer, pH 3.6.
Manganese peroxidase was determined using phenol red as a
substrate. The reaction product was measured at 610 nm
(�610=22 mM)1 cm)1) [9]. The reaction mixture contained
50 mM succinate buffer, pH 4.5, 0.01% phenol red and the ap-
propriate volume of enzyme. The addition of H2O2 (0.1 mM
final concentration) initiated the reaction. LiP activity was de-
termined by oxidation of veratryl alcohol to veratryl aldehyde
(�310=9,300 M)1 cm)1). The reaction mixture contained 0.1 M
sodium tartrate buffer, pH 3, 2 mM veratryl alcohol, 0.4 mM
H2O2 and the appropriate volume of enzyme. One enzyme unit
(U) was defined as 1.0 lmol of product formed per minute under
the assay conditions. In terms of production, the activity was
defined as U per g dry wheat bran (U g)1).

Results

Weight loss, soluble proteins, reducing sugars,
pH, and chitin content

Time courses of weight loss, soluble proteins, reducing
sugars, pH, and chitin content are shown in Fig. 1.
Growth was monitored by measuring the chitin content
in the dried substrate. The maximum rate of growth was
observed between days 7 and 18. As mycelium of
F. sclerodermeus contains 35 lg NAGA mg)1, actual
biomass could be estimated as a maximum of 136 mg (g
dry substrate))1. Data for reducing sugars showed that
the weight loss due to minor carbohydrates was negli-
gible, with an initial value of 45 lg (g dry wheat bran))1.
A 38% loss in total dry weight in the medium was
measured after 28 days of cultivation, with most of the
loss occurring between days 7 and 18. Differential acid
hydrolysis of the dried samples showed that the weight
losses were due to cellulose and lignin degradation
(Fig. 2). Cellulose was more extensively degraded, with
the highest rate of loss between days 7 and 14. During
the 28-day incubation period, the losses of cellulose and
lignin were 38 and 15%, respectively.

Fig. 1 Time course of chitin, pH, reducing sugars, dry-weight loss,
and soluble protein from Fomes sclerodermeus grown in wheat
bran. Means of three replicates and S.E.M. are shown

Fig. 2 Time course of percentages of remaining cellulose and lignin
in the wheat bran. Means of three replicates and S.E.M. are shown
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Laccase and MnP activities

No LiP activity was measured in any medium tested.
Time courses of MnP and laccase activities are shown in
Fig. 3. The maximum MnP activity was measured at
14 days post-inoculation (0.21 U ml)1), corresponding
to 6.3 U g)1, and then decreased. The maximum laccase
activity production by F. sclerodermeus was at 28 days
post-inoculation; Fig. 3 shows a linear increase of this
activity until the last sampling day. In terms of pro-
ductivity, the value at 28 days was 270 U g)1.

Table 1 shows the effect of different additives on
weight loss of the substrate and both MnP and laccase
activities at 21 days post-inoculation. F. sclerodermeus,
under the conditions studied in this work, did not produce
increased laccase or MnP activities in response to any of
the additives tested. The maximum activity reached by
each enzyme was comparable to that obtained by other
fungi cultured in chemically defined media.

Discussion

F. sclerodermeus did not produce LiP activity under the
conditions tested. The production of LiP is an excep-
tional event among the white-rot fungi [22,26]. As LiP
and MnP appear only during the stationary phase,

ligninolytic enzymes in P. chrysosporium are associated
with secondary metabolism. In F. sclerodermeus in
solid-state fermentation, MnP and laccase activities
increased during trophophase until day 18 in parallel
with growth, showing that these enzymes are not sec-
ondary metabolites but seem to be growth-dependent.
The MnP and laccase activities obtained were higher
than those obtained in other fungi. The activity of
MnP in Lentinula edodes strains cultured under similar
conditions reached 3 mU g)1 [16] while MnP produc-
tion by F. sclerodermeus was 2,100 times higher. With
regard to laccase activity, the white-rot fungus Pleu-
rotus sajor-caju cultured in solid-substrate fermentation
not only produced a lower titer than obtained in
F. sclerodermeus but the medium was supplemented
with aromatic compounds to further increase the
activity [13]. F. sclerodermeus cultured in liquid medi-
um without the addition of inducers produced 0.17 and
0.34 U ml)1 of MnP and laccase activity, respectively
[19]. Addition of inducers such as copper and aromatic
compounds is routinely used in order to increase lac-
case and MnP activities. The highest laccase titers were
obtained with copper induction. Positive effects have
been reported for laccase production by Trametes pu-
bescens [6], Trametes trogii [14] and several isoenzymes
secreted by Pleurotus ostreatus [8]. Manganese added as
an inorganic salt is widely used as a MnP inducer
[24,26], but negatively affects growth of certain organ-
isms [5]. Due to their biomass dependence, these en-
zyme activities might be increased by adding glucose,
nitrogen, or other nutrients favoring growth [12]. In
this work, we used a natural culture medium that
probably contained laccase and MnP inducers due to
the fact that none such activities could be increased by
the addition of inducers. Thus, because of its low cost
and the resulting high levels of enzyme production, the
unsupplemented medium could be used to scale up the
production of both laccase and MnP. The fact that
F. sclerodermeus produces high levels of both laccase
and MnP is a further advantage with respect to their
possible synergism [7] in bioremediation processes.
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